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TIDAL REGIME OF INTACT PLANETOID CAPTURE MODEL FOR THE

EARTH-MOON SYSTEM: DOES IT RELATE TO THE ARCHEAN SEDIMENTARY

ROCK RECORD?; Robert J. Malcuit, Dept. of Geology and Geog., Ronald R. Winters,

Dept. of Physics and Astron., Denison Univ., Granville, Ohio 43023.

Regardless of one's favorite model for the origin of the earth-moon system (fission,
coformation, tidal capture, giant-impact) the early history of lunar orbital evolution would

produce significant thermal and earth and ocean tidal effects on the primitive earth. Three of
the above lunar origin models (fission, coformation, giant-impact) feature a circular orbit
which undergoes a progressive increase in orbital radius from the time of origin to the

present time [1,2]. In contrast, a tidal capture model places the moon in an elliptical orbit
undergoing progressive circularization from the time of capture (for model purposes about

3.9 billion years ago) for at least a few 10s years following the capture event. Once the orbit
is circularized, the subsequent tidal history for a tidal capture scenario is similar to that for
other models of lunar origin and features a progressive increase in orbital radius to the

current state of the lunar orbit. This elliptical orbit phase, if it occurred, should have left a

distinctive signature in the terrestrial and lunar rock records. Depositional events would be

associated terrestrial shorelines characterized by abnormally high, but progressively
decreasing, ocean tidal amplitudes and ranges associated with such an orbital evolution.

In previous work we have demonstrated that gravitational (tidal) capture of a lunar-

mass planetoid by an earth-mass planet is physically possible [3,4]. A typical coplanar,
three-body stable capture scenario is shown in Figure la. Figure lb shows a semilog plot of

Tidal Amplitude vs. Time for this 4-year stable capture sequence. To account for the

angular momentum of the earth-moon system the earth rotation rate for such an tidal capture

scenario is about 10 hours/day. Using a numerical two-body orbit evolution program and
reasonable deformational and dissipative parameters for the interacting bodies, we find that

the most realistic time scales for orbit circularization to 10% eccentricity are in the range of

1.0-1.6 billion years. Two such scenarios are shown in Figure 2. Figure 2a depicts a two-

body orbit circularization sequence in which all energy is dissipated in the satellite by way of
radial tidal action; thus the satellite orbit does not gain angular momentum during the orbit
circularization. The scenario in Figure 2b is more realistic and features angular momentum

transfer from the rotating planet to the satellite orbit via the tangential tidal mechanism. In

this scenario the major axis of the lunar orbit decreases from about 183 1_ to 93 R, as the

rotation rate of the planet decreases from about 10 hours/day to 14.4 hours/day. Using a 3-
body orbit program (4th order Runge-Kutta integrator) and a program for plotting the

equilibrium tidal amplitudes and ranges directly from the numerical orbital data, we find that
the maximum perigean earth tidal ranges at 2, 6, and 10 hundred million years after capture

are about 20, 5, and 3 meters, respectively. Although solid rock tides tend not to yield
much of a geological record, such action could contribute substantially to the thermal regime
of a planet or satellite. The ocean tides, however, can be recorded in the sedimentary rock
record. Several rock units in the age range 3.6-2.5 billion years before present are reported

to have a major tidal component. Examples are the Warrawoona, Fortescue, and Hamersley
Groups of Western Australia [5,6,7] and the Pangola and Witwatersrand Supergroups of
South Africa [8,9]. Detailed study of the features of these tidal sequences may be helpful in
deciphering the style of lunar orbital evolution during the Archean Eon.



924 LPSC XXIV

TIDAL REGIME OF CAPTURE MODEL; Malcuit R. J. and Winters R. R.

References: [1] Peale, S. J. and Cassen, P. (1978) Icarus. 36, 245-269; [2] Ross, M. N. and Schubert,

G. (1989) _Qur. GeoDhvs. Res., 94, 9533-9544; [3] Malcoit, R. J. et al. (1989) _, Cambridge
Univ. Press and Lunar Planet. Inst., 581-591; [4] Malcuit et al. (1992) [hoc. Vol.. 3rd Int. Archeean Svnm.,

Geol. Dept. & Univ. Ext., Univ. of Western Australia, Pub. ff22, 223-235; [5] Lowe, D. R. (1983)

_ggi_, 19, 239-283; Ho, S. E. et. al. (1990) _th Int. Are ha_t Svnm. Excur. Guidebook, Geol.

Dept. & Univ. Ext., Univ. of Western Australia, PUb. #21, 1-57; [7] Simonson, B. M. et al. (1993)

in press; [8] Von Brmm, V. and Mason, T. R. (1977) _, 18, 245-255; [9]

Eriksmn, K. A. et al. (1981) _[[[mggltlT...Q._, 29, 309-325.

CAPTUR( S(Q.: ORB. !-24 0.0-1461.0 DAYS

toJ, i

i

i

t
U

_ *IN

-" (a)

i t o _ o I
"J_-4.14 _I .4m °N4 |llO " _ •

msl_( (L_TH lIAna)

iO s

104 I

tO I

I0";

_<
w 10 -I

10 -]

10..4

0.00

EARTH TIDAL AMPLITUDES

|

(b)

m t .00 2.00 3.00 a.oo

TrUE (YEARS)

Figure 1. (a) Diagram showing the first 24 orbits (4 years) of a stable prograde capture scemuio in s

co-planar, non-rotating coordinate system. Some values for this run ate rp - 1.43 R,, earth anomaly : 320 °,

planetoid anomaly : 190.392% planetoid heliocentric eccentricity : 1.25_, h, : 0.26, Q. : 1 for the initial
e_.otmter and 10 for all subsequent encounters, h, : 0.7, Q, : 100. (b) Semilog plot of Earth Tidal

Amplitude vs. Time for the four-year orbital sequence shown in Figure la. Note the irregular pattern of tidal

spikesassociatedwith the closeencounters.
200 R, _'.

(a) _ ' (b)

Figure 2. (a) Sequence of seven orbital gages in a two-body calculation of a post-capture orbit

circularization seqeunce in which all energy is dimpated within the body of a lunar-like planetoid with h=0.5

and Q= 1000. In this case the orbital angular momentum of the planetoid remah_ the same throughout the orbit

circularization sequence. A 30 R, prograde circular orbit is consistent with a 10 hour/day rotation rate for the

pre-capture planet. The largest orbit on the diagram is the maximum size orbit that is stable relative to solar

perturbationsin a 3-body system for the specified quantity of angular momentum. Each of the orbital stages

represent 200 million years of orbital evolution (circularization). The time scale for orbital circuiarization in
this scenario is about 1.1 billion years. (b) Sequence of eight orbital stages in a two-body system calculation of

a post-capture orbital circularization sequence in which energy is dissipated in both the lunar-like planetoid

(radial tides) and the earth-like planet (radial and tangential tides). For this run h,=0.5, Q,= 1000, h,=0.7,
Q.= 100. Note that the tangential tides operating on the planet transfer rotational angular momentum from the

planet to the sateilite's orbit. The times:ale for circuiaxization to 10% eccentricity is about 1.4 billion years.
The resulting near circular orbit of the satellite has angular momentum equivalent to a circular orbit of about 46

R, and the planet rotation rate is about 14.4 hours/day.




